Structural backward stability in rational eigenvalue problems solved via block Kronecker linearizations

03/30/2021
by   Froilán M. Dopico, et al.
0

We study the backward stability of running a backward stable eigenstructure solver on a pencil S(λ) that is a strong linearization of a rational matrix R(λ) expressed in the form R(λ)=D(λ)+ C(λ I_ℓ-A)^-1B, where D(λ) is a polynomial matrix and C(λ I_ℓ-A)^-1B is a minimal state-space realization. We consider the family of block Kronecker linearizations of R(λ), which are highly structured pencils. Backward stable eigenstructure solvers applied to S(λ) will compute the exact eigenstructure of a perturbed pencil S(λ):=S(λ)+Δ_S(λ) and the special structure of S(λ) will be lost. In order to link this perturbed pencil with a nearby rational matrix, we construct a strictly equivalent pencil S(λ) to S(λ) that restores the original structure, and hence is a block Kronecker linearization of a perturbed rational matrix R(λ) = D(λ)+ C(λ I_ℓ- A)^-1 B, where D(λ) is a polynomial matrix with the same degree as D(λ). Moreover, we bound appropriate norms of D(λ)- D(λ), C - C, A - A and B - B in terms of an appropriate norm of Δ_S(λ). These bounds may be inadmissibly large, but we also introduce a scaling that allows us to make them satisfactorily tiny. Thus, for this scaled representation, we prove that the staircase and the QZ algorithms compute the exact eigenstructure of a rational matrix R(λ) that can be expressed in exactly the same form as R(λ) with the parameters defining the representation very near to those of R(λ). This shows that this approach is backward stable in a structured sense.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset