Structured Vision-Language Pretraining for Computational Cooking
Vision-Language Pretraining (VLP) and Foundation models have been the go-to recipe for achieving SoTA performance on general benchmarks. However, leveraging these powerful techniques for more complex vision-language tasks, such as cooking applications, with more structured input data, is still little investigated. In this work, we propose to leverage these techniques for structured-text based computational cuisine tasks. Our strategy, dubbed VLPCook (Structured Vision-Language Pretraining for Computational Cooking), first transforms existing image-text pairs to image and structured-text pairs. This allows to pretrain our VLPCook model using VLP objectives adapted to the strutured data of the resulting datasets, then finetuning it on downstream computational cooking tasks. During finetuning, we also enrich the visual encoder, leveraging pretrained foundation models (e.g. CLIP) to provide local and global textual context. VLPCook outperforms current SoTA by a significant margin (+3.3 Recall@1 absolute improvement) on the task of Cross-Modal Food Retrieval on the large Recipe1M dataset. Finally, we conduct further experiments on VLP to validate their importance, especially on the Recipe1M+ dataset. The code will be made publicly available.
READ FULL TEXT