Studying Hadronization by Machine Learning Techniques

11/30/2021
by   Gábor Bíró, et al.
0

Hadronization is a non-perturbative process, which theoretical description can not be deduced from first principles. Modeling hadron formation, requires several assumptions and various phenomenological approaches. Utilizing state-of-the-art Computer Vision and Deep Learning algorithms, it is eventually possible to train neural networks to learn non-linear and non-perturbative features of the physical processes. In this study, results of two ResNet networks are presented by investigating global and kinematical quantities, indeed jet- and event-shape variables. The widely used Lund string fragmentation model is applied as a baseline in √(s)= 7 TeV proton-proton collisions to predict the most relevant observables at further LHC energies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro