Subexponentialiy of densities of infinitely divisible distributions
We show the equivalence of three properties for an infinitely divisible distribution: the subexponentiality of the density, the subexponentiality of the density of its Lévy measure and the tail equivalence between the density and its Lévy measure density, under monotonic-type assumptions on the Lévy measure density. The key assumption is that tail of the Lévy measure density is asymptotic to a non-increasing function or is eventually non-increasing. Our conditions are novel and cover a rather wide class of infinitely divisible distributions. Several significant properties for analyzing the subexponentiality of densities have been derived such as closure properties of [ convolution, convolution roots and asymptotic equivalence ] and the factorization property. Moreover, we illustrate that the results are applicable for developing the statistical inference of subexponential infinitely divisible distributions which are absolutely continuous.
READ FULL TEXT