Sum-Product Graphical Models

08/21/2017
by   Mattia Desana, et al.
0

This paper introduces a new probabilistic architecture called Sum-Product Graphical Model (SPGM). SPGMs combine traits from Sum-Product Networks (SPNs) and Graphical Models (GMs): Like SPNs, SPGMs always enable tractable inference using a class of models that incorporate context specific independence. Like GMs, SPGMs provide a high-level model interpretation in terms of conditional independence assumptions and corresponding factorizations. Thus, the new architecture represents a class of probability distributions that combines, for the first time, the semantics of graphical models with the evaluation efficiency of SPNs. We also propose a novel algorithm for learning both the structure and the parameters of SPGMs. A comparative empirical evaluation demonstrates competitive performances of our approach in density estimation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro