Sum Rate Maximization for IRS-assisted Uplink NOMA
An intelligent reflecting surface (IRS) consists of a large number of low-cost reflecting elements, which can steer the incident signal collaboratively by passive beamforming. This way, IRS reconfigures the wireless environment to boost the system performance. In this paper, we consider an IRS-assisted uplink non-orthogonal multiple access (NOMA) system. The objective is to maximize the sum rate of all users under individual power constraint. The considered problem requires a joint power control at the users and beamforming design at the IRS, and is nonconvex. To handle it, semidefinite relaxation is employed, which provides a near-optimal solution. Presented numerical results show that the proposed NOMA-based scheme achieves a larger sum rate than orthogonal multiple access (OMA)-based one. Moreover, the impact of the number of reflecting elements on the sum rate is revealed.
READ FULL TEXT