SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning

07/09/2020
by   Kimin Lee, et al.
66

Model-free deep reinforcement learning (RL) has been successful in a range of challenging domains. However, there are some remaining issues, such as stabilizing the optimization of nonlinear function approximators, preventing error propagation due to the Bellman backup in Q-learning, and efficient exploration. To mitigate these issues, we present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy RL algorithms. SUNRISE integrates three key ingredients: (a) bootstrap with random initialization which improves the stability of the learning process by training a diverse ensemble of agents, (b) weighted Bellman backups, which prevent error propagation in Q-learning by reweighing sample transitions based on uncertainty estimates from the ensembles, and (c) an inference method that selects actions using highest upper-confidence bounds for efficient exploration. Our experiments show that SUNRISE significantly improves the performance of existing off-policy RL algorithms, such as Soft Actor-Critic and Rainbow DQN, for both continuous and discrete control tasks on both low-dimensional and high-dimensional environments. Our training code is available at https://github.com/pokaxpoka/sunrise.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset