Task-Balanced Batch Normalization for Exemplar-based Class-Incremental Learning
Batch Normalization (BN) is an essential layer for training neural network models in various computer vision tasks. It has been widely used in continual learning scenarios with little discussion, but we find that BN should be carefully applied, particularly for the exemplar memory based class incremental learning (CIL). We first analyze that the empirical mean and variance obtained for normalization in a BN layer become highly biased toward the current task. To tackle its significant problems in training and test phases, we propose Task-Balanced Batch Normalization (TBBN). Given each mini-batch imbalanced between the current and previous tasks, TBBN first reshapes and repeats the batch, calculating near task-balanced mean and variance. Second, we show that when the affine transformation parameters of BN are learned from a reshaped feature map, they become less-biased toward the current task. Based on our extensive CIL experiments with CIFAR-100 and ImageNet-100 datasets, we demonstrate that our TBBN is easily applicable to most of existing exemplar-based CIL algorithms, improving their performance by decreasing the forgetting on the previous tasks.
READ FULL TEXT