Tensor Component Analysis for Interpreting the Latent Space of GANs

11/23/2021
by   James Oldfield, et al.
10

This paper addresses the problem of finding interpretable directions in the latent space of pre-trained Generative Adversarial Networks (GANs) to facilitate controllable image synthesis. Such interpretable directions correspond to transformations that can affect both the style and geometry of the synthetic images. However, existing approaches that utilise linear techniques to find these transformations often fail to provide an intuitive way to separate these two sources of variation. To address this, we propose to a) perform a multilinear decomposition of the tensor of intermediate representations, and b) use a tensor-based regression to map directions found using this decomposition to the latent space. Our scheme allows for both linear edits corresponding to the individual modes of the tensor, and non-linear ones that model the multiplicative interactions between them. We show experimentally that we can utilise the former to better separate style- from geometry-based transformations, and the latter to generate an extended set of possible transformations in comparison to prior works. We demonstrate our approach's efficacy both quantitatively and qualitatively compared to the current state-of-the-art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset