Tensor-Train Compression of Discrete Element Method Simulation Data

10/15/2022
by   Saibal De, et al.
0

We propose a framework for discrete scientific data compression based on the tensor-train (TT) decomposition. Our approach is tailored to handle unstructured output data from discrete element method (DEM) simulations, demonstrating its effectiveness in compressing both raw (e.g. particle position and velocity) and derived (e.g. stress and strain) datasets. We show that geometry-driven "tensorization" coupled with the TT decomposition (known as quantized TT) yields a hierarchical compression scheme, achieving high compression ratios for key variables in these DEM datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset