Testing for threshold effects in the TARMA framework
We present supremum Lagrange Multiplier tests to compare a linear ARMA specification against its threshold ARMA extension. We derive the asymptotic distribution of the test statistics both under the null hypothesis and contiguous local alternatives. Moreover, we prove the consistency of the tests. The Monte Carlo study shows that the tests enjoy good finite-sample properties, are robust against model mis-specification and their performance is not affected if the order of the model is unknown. The tests present a low computational burden and do not suffer from some of the drawbacks that affect the quasi-likelihood ratio setting. Lastly, we apply our tests to a time series of standardized tree-ring growth indexes and this can lead to new research in climate studies.
READ FULL TEXT