Text Compression for Sentiment Analysis via Evolutionary Algorithms

09/20/2017
by   Emmanuel Dufourq, et al.
0

Can textual data be compressed intelligently without losing accuracy in evaluating sentiment? In this study, we propose a novel evolutionary compression algorithm, PARSEC (PARts-of-Speech for sEntiment Compression), which makes use of Parts-of-Speech tags to compress text in a way that sacrifices minimal classification accuracy when used in conjunction with sentiment analysis algorithms. An analysis of PARSEC with eight commercial and non-commercial sentiment analysis algorithms on twelve English sentiment data sets reveals that accurate compression is possible with (0 in sentiment classification accuracy for (20 PARSEC using LingPipe, the most accurate of the sentiment algorithms. Other sentiment analysis algorithms are more severely affected by compression. We conclude that significant compression of text data is possible for sentiment analysis depending on the accuracy demands of the specific application and the specific sentiment analysis algorithm used.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset