Textural Approach for Mass Abnormality Segmentation in Mammographic Images

12/03/2014
by   Khamsa Djaroudib, et al.
0

Mass abnormality segmentation is a vital step for the medical diagnostic process and is attracting more and more the interest of many research groups. Currently, most of the works achieved in this area have used the Gray Level Co-occurrence Matrix (GLCM) as texture features with a region-based approach. These features come in previous phase for segmentation stage or are using as inputs to classification stage. The work discussed in this paper attempts to experiment the GLCM method under a contour-based approach. Besides, we experiment the proposed approach on various tissues densities to bring more significant results. At this end, we explored some challenging breast images from BIRADS medical Data Base. Our first experimentations showed promising results with regard to the edges mass segmentation methods. This paper discusses first the main works achieved in this area. Sections 2 and 3 present materials and our methodology. The main results are showed and evaluated before concluding our paper.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset