The BDF2-Maruyama Scheme for Stochastic Evolution Equations with Monotone Drift

05/18/2021
by   Raphael Kruse, et al.
0

We study the numerical approximation of stochastic evolution equations with a monotone drift driven by an infinite-dimensional Wiener process. To discretize the equation, we combine a drift-implicit two-step BDF method for the temporal discretization with an abstract Galerkin method for the spatial discretization. After proving well-posedness of the BDF2-Maruyama scheme, we establish a convergence rate of the strong error for equations under suitable Lipschitz conditions. We illustrate our theoretical results through various numerical experiments and compare the performance of the BDF2-Maruyama scheme to the backward Euler–Maruyama scheme.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro