The complexity of the Chinese Remainder Theorem
The Chinese Remainder Theorem for the integers says that every system of congruence equations is solvable as long as the system satisfies an obvious necessary condition. This statement can be generalized in a natural way to arbitrary algebraic structures using the language of Universal Algebra. In this context, an algebra is a structure of a first-order language with no relation symbols, and a congruence on an algebra is an equivalence relation on its base set compatible with its fundamental operations. A tuple of congruences of an algebra is called a Chinese Remainder tuple if every system involving them is solvable. In this article we study the complexity of deciding whether a tuple of congruences of a finite algebra is a Chinese Remainder tuple. This problem, which we denote CRT, is easily seen to lie in coNP. We prove that it is actually coNP-complete and also show that it is tractable when restricted to several well-known classes of algebras, such as vector spaces and distributive lattices. The polynomial algorithms we exhibit are made possible by purely algebraic characterizations of Chinese Remainder tuples for algebras in these classes, which constitute interesting results in their own right. Among these, an elegant characterization of Chinese Remainder tuples of finite distributive lattices stands out. Finally, we address the restriction of CRT to an arbitrary equational class 𝒱 generated by a two-element algebra. Here we establish an (almost) dichotomy by showing that, unless 𝒱 is the class of semilattices, the problem is either coNP-complete or tractable.
READ FULL TEXT