The Effects of Different JSON Representations on Querying Knowledge Graphs

04/08/2020
by   Masoud Salehpour, et al.
0

Knowledge Graphs (KGs) have emerged as the de-facto standard for modeling and querying datasets with a graph-like structure in the Semantic Web domain. Our focus is on the performance challenges associated with querying KGs. We developed three informationally equivalent JSON-based representations for KGs, namely, Subject-based Name/Value (JSON-SNV), Documents of Triples (JSON-DT), and Chain-based Name/Value (JSON-CNV). We analyzed the effects of these representations on query performance by storing them on two prominent document-based Data Management Systems (DMSs), namely, MongoDB and Couchbase and executing a set of benchmark queries over them. We also compared the execution times with row-store Virtuoso, column-store Virtuoso, and as three major DMSs with different architectures (aka, RDF-stores). Our results indicate that the representation type has a significant performance impact on query execution. For instance, the JSON-SNV outperforms others by nearly one order of magnitude to execute subject-subject join queries. This and the other results presented in this paper can assist in more accurate benchmarking of the emerging DMSs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset