The ERA of FOLE: Foundation

12/23/2015
by   Robert E. Kent, et al.
0

This paper discusses the representation of ontologies in the first-order logical environment FOLE (Kent 2013). An ontology defines the primitives with which to model the knowledge resources for a community of discourse (Gruber 2009). These primitives, consisting of classes, relationships and properties, are represented by the entity-relationship-attribute ERA data model (Chen 1976). An ontology uses formal axioms to constrain the interpretation of these primitives. In short, an ontology specifies a logical theory. This paper is the first in a series of three papers that provide a rigorous mathematical representation for the ERA data model in particular, and ontologies in general, within the first-order logical environment FOLE. The first two papers show how FOLE represents the formalism and semantics of (many-sorted) first-order logic in a classification form corresponding to ideas discussed in the Information Flow Framework (IFF). In particular, this first paper provides a foundation that connects elements of the ERA data model with components of the first-order logical environment FOLE, and the second paper provides a superstructure that extends FOLE to the formalisms of first-order logic. The third paper defines an interpretation of FOLE in terms of the transformational passage, first described in (Kent 2013), from the classification form of first-order logic to an equivalent interpretation form, thereby defining the formalism and semantics of first-order logical/relational database systems (Kent 2011). The FOLE representation follows a conceptual structures approach, that is completely compatible with formal concept analysis (Ganter and Wille 1999) and information flow (Barwise and Seligman 1997).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset