The heat modulated infinite dimensional Heston model and its numerical approximation

06/21/2022
by   Fred Espen Benth, et al.
0

The HEat modulated Infinite DImensional Heston (HEIDIH) model and its numerical approximation are introduced and analyzed. This model falls into the general framework of infinite dimensional Heston stochastic volatility models of (F.E. Benth, I.C. Simonsen '18), introduced for the pricing of forward contracts. The HEIDIH model consists of a one-dimensional stochastic advection equation coupled with a stochastic volatility process, defined as a Cholesky-type decomposition of the tensor product of a Hilbert-space valued Ornstein-Uhlenbeck process, the mild solution to the stochastic heat equation on the real half-line. The advection and heat equations are driven by independent space-time Gaussian processes which are white in time and colored in space, with the latter covariance structure expressed by two different kernels. In the first part of the paper, regularity results for the HEIDIH model in fractional Sobolev spaces are formulated. These are achieved under smoothness conditions on the covariance kernels, which in particular allow for weighted Matérn kernels. In the second part, numerical approximation of the model is considered. An error decomposition formula, pointwise in space and time, for a semi-explicit finite-difference scheme is proven. For a special case, essentially sharp convergence rates are obtained when this is combined with a fully discrete finite element approximation of the stochastic heat equation. The analysis takes into account a localization error, a pointwise-in-space finite element discretization error and an error stemming from the noise being sampled pointwise in space. The rates obtained in the analysis are higher than what would be obtained using a standard Sobolev embedding technique. Numerical simulations illustrate the results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset