The HSIC Bottleneck: Deep Learning without Back-Propagation

08/05/2019
by   Wan-Duo Kurt Ma, et al.
0

We introduce the HSIC (Hilbert-Schmidt independence criterion) bottleneck for training deep neural networks. The HSIC bottleneck is an alternative to conventional backpropagation, that has a number of distinct advantages. The method facilitates parallel processing and requires significantly less operations. It does not suffer from exploding or vanishing gradients. It is biologically more plausible than backpropagation as there is no requirement for symmetric feedback. We find that the HSIC bottleneck provides a performance on the MNIST/FashionMNIST/CIFAR10 classification comparable to backpropagation with a cross-entropy target, even when the system is not encouraged to make the output resemble the classification labels. Appending a single layer trained with SGD (without backpropagation) results in state-of-the-art performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset