The Impact of Heterogeneity and Geometry on the Proof Complexity of Random Satisfiability

04/15/2020
by   Thomas Bläsius, et al.
0

Satisfiability is considered the canonical NP-complete problem and is used as a starting point for hardness reductions in theory, while in practice heuristic SAT solving algorithms can solve large-scale industrial SAT instances very efficiently. This disparity between theory and practice is believed to be a result of inherent properties of industrial SAT instances that make them tractable. Two characteristic properties seem to be prevalent in the majority of real-world SAT instances, heterogeneous degree distribution and locality. To understand the impact of these two properties on SAT, we study the proof complexity of random k-SAT models that allow to control heterogeneity and locality. Our findings show that heterogeneity alone does not make SAT easy as heterogeneous random k-SAT instances have superpolynomial resolution size. This implies intractability of these instances for modern SAT-solvers. On the other hand, modeling locality with an underlying geometry leads to small unsatisfiable subformulas, which can be found within polynomial time. A key ingredient for the result on geometric random k-SAT can be found in the complexity of higher-order Voronoi diagrams. As an additional technical contribution, we show a linear upper bound on the number of non-empty Voronoi regions, that holds for points with random positions in a very general setting. In particular, it covers arbitrary p-norms, higher dimensions, and weights affecting the area of influence of each point multiplicatively. This is in stark contrast to quadratic lower bounds for the worst case.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset