The Mathematics of Text Structure
In previous work we gave a mathematical foundation, referred to as DisCoCat, for how words interact in a sentence in order to produce the meaning of that sentence. To do so, we exploited the perfect structural match of grammar and categories of meaning spaces. Here, we give a mathematical foundation, referred to as DisCoCirc, for how sentences interact in texts in order to produce the meaning of that text. We revisit DisCoCat: while in the latter all meanings are states (i.e. have no input), in DisCoCirc word meanings are types of which the state can evolve, and sentences are gates within a circuit which update the meaning of words. Like in DisCoCat, word meanings can live in a variety of spaces e.g. propositional, vectorial, or cognitive. The compositional structure are string diagrams representing information flows, and an entire text yields a single string diagram in which word meanings lift to the meaning of an entire text. While the developments in this paper are independent of a physical embodiment (cf. classical vs. quantum computing), both the compositional formalism and suggested meaning model are highly quantum-inspired, and implementation on a quantum computer would come with a range of benefits. We also praise Jim Lambek for his role in mathematical linguistics in general, and the development of the DisCo program more specifically.
READ FULL TEXT