The Minimum Tollbooth Problem in Atomic Network Congestion Games with Unsplittable Flows

06/24/2019
by   Julian Nickerl, et al.
0

This work analyzes the minimum tollbooth problem in atomic network congestion games with unsplittable flows. The goal is to place tolls on edges, such that there exists a pure Nash equilibrium in the tolled game that is a social optimum in the untolled one. Additionally, we require the number of tolled edges to be the minimum. This problem has been extensively studied in non-atomic games, however, to the best of our knowledge, it as not been considered for atomic games before. By a reduction from the weighted CNF SAT problem, we show both the NP-hardness of the problem and the W[2]-hardness when parameterizing the problem with the number of tolled edges. On the positive side, we present a polynomial time algorithm for networks on series-parallel graphs that turns any given state of the untolled game into a pure Nash equilibrium of the tolled game with the minimum number of tolled edges.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset