The Moving Discontinuous Galerkin Finite Element Method with Interface Condition Enforcement for Compressible Viscous Flows
The moving discontinuous Galerkin finite element method with interface condition enforcement (MDG-ICE) is applied to the case of viscous flows. This method uses a weak formulation that separately enforces the conservation law, constitutive law, and the corresponding interface conditions in order to provide the means to detect interfaces or under-resolved flow features. To satisfy the resulting overdetermined weak formulation, the discrete domain geometry is introduced as a variable, so that the method implicitly fits a priori unknown interfaces and moves the grid to resolve sharp, but smooth, gradients, achieving a form of anisotropic curvilinear r-adaptivity. This approach avoids introducing low-order errors that arise using shock capturing, artificial dissipation, or limiting. The utility of this approach is demonstrated with its application to a series of test problems culminating with the compressible Navier-Stokes solution to a Mach 5 viscous bow shock for a Reynolds number of 10^5 in two-dimensional space. Time accurate solutions of unsteady problems are obtained via a space-time formulation, in which the unsteady problem is formulated as a higher dimensional steady space-time problem. The method is shown to accurately resolve and transport viscous structures without relying on numerical dissipation for stabilization.
READ FULL TEXT