The Progression of Disparities within the Criminal Justice System: Differential Enforcement and Risk Assessment Instruments
Algorithmic risk assessment instruments (RAIs) increasingly inform decision-making in criminal justice. RAIs largely rely on arrest records as a proxy for underlying crime. Problematically, the extent to which arrests reflect overall offending can vary with the person's characteristics. We examine how the disconnect between crime and arrest rates impacts RAIs and their evaluation. Our main contribution is a method for quantifying this bias via estimation of the amount of unobserved offenses associated with particular demographics. These unobserved offenses are then used to augment real-world arrest records to create part real, part synthetic crime records. Using this data, we estimate that four currently deployed RAIs assign 0.5–2.8 percentage points higher risk scores to Black individuals than to White individuals with a similar arrest record, but the gap grows to 4.5–11.0 percentage points when we match on the semi-synthetic crime record. We conclude by discussing the potential risks around the use of RAIs, highlighting how they may exacerbate existing inequalities if the underlying disparities of the criminal justice system are not taken into account. In light of our findings, we provide recommendations to improve the development and evaluation of such tools.
READ FULL TEXT