The red one!: On learning to refer to things based on their discriminative properties

03/08/2016
by   Angeliki Lazaridou, et al.
0

As a first step towards agents learning to communicate about their visual environment, we propose a system that, given visual representations of a referent (cat) and a context (sofa), identifies their discriminative attributes, i.e., properties that distinguish them (has_tail). Moreover, despite the lack of direct supervision at the attribute level, the model learns to assign plausible attributes to objects (sofa-has_cushion). Finally, we present a preliminary experiment confirming the referential success of the predicted discriminative attributes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro