The Spearman-Brown Formula and Reliabilities of Random Test Forms

08/26/2023
by   Jules L. Ellis, et al.
0

It is shown that the psychometric test reliability, based on any true-score model with randomly sampled items and conditionally independent errors, converges to 1 as the test length goes to infinity, assuming some fairly general regularity conditions. The asymptotic rate of convergence is given by the Spearman-Brown formula, and for this it is not needed that the items are parallel, or latent unidimensional, or even finite dimensional. Simulations with the 2-parameter logistic item response theory model reveal that there can be a positive bias in the reliability of short multidimensional tests, meaning that applying the Spearman-Brown formula in these cases would lead to overprediction of the reliability that will result from lengthening the tests. For short unidimensional tests under the 2-parameter logistic model the reliabilities are almost unbiased, meaning that application of the Spearman-Brown formula in these cases leads to predictions that are approximately unbiased.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro