The Statistical Complexity of Interactive Decision Making

12/27/2021
by   Dylan J. Foster, et al.
13

A fundamental challenge in interactive learning and decision making, ranging from bandit problems to reinforcement learning, is to provide sample-efficient, adaptive learning algorithms that achieve near-optimal regret. This question is analogous to the classical problem of optimal (supervised) statistical learning, where there are well-known complexity measures (e.g., VC dimension and Rademacher complexity) that govern the statistical complexity of learning. However, characterizing the statistical complexity of interactive learning is substantially more challenging due to the adaptive nature of the problem. The main result of this work provides a complexity measure, the Decision-Estimation Coefficient, that is proven to be both necessary and sufficient for sample-efficient interactive learning. In particular, we provide: 1. a lower bound on the optimal regret for any interactive decision making problem, establishing the Decision-Estimation Coefficient as a fundamental limit. 2. a unified algorithm design principle, Estimation-to-Decisions (E2D), which transforms any algorithm for supervised estimation into an online algorithm for decision making. E2D attains a regret bound matching our lower bound, thereby achieving optimal sample-efficient learning as characterized by the Decision-Estimation Coefficient. Taken together, these results constitute a theory of learnability for interactive decision making. When applied to reinforcement learning settings, the Decision-Estimation Coefficient recovers essentially all existing hardness results and lower bounds. More broadly, the approach can be viewed as a decision-theoretic analogue of the classical Le Cam theory of statistical estimation; it also unifies a number of existing approaches – both Bayesian and frequentist.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset