The Use of Machine Learning and Big Five Personality Taxonomy to Predict Construction Workers' Safety Behaviour
Research has found that many occupational accidents are foreseeable, being the result of people's unsafe behaviour from a retrospective point of view. The prediction of workers' safety behaviour will enable the prior insights into each worker's behavioural tendency and will be useful in the design of management practices prior to the occurrence of accidents and contribute to the reduction of injury rates. In recent years, researchers have found that people do have stable predispositions to engage in certain safety behavioural patterns which vary among individuals as a function of personality features. In this study, an innovative forecasting model, which employs machine learning algorithms, is developed to estimate construction workers' behavioural tendency based on the Big Five personality taxonomy. The data-driven nature of machine learning technique enabled a reliable estimate of the personality-safety behaviour relationship, which allowed this study to provide novel insight that nonlinearity may exist in the relationship between construction workers' personality traits and safety behaviour. The developed model is found to be sufficient to have satisfactory accuracy in explaining and predicting workers' safety behaviour. This finding provides the empirical evidence to support the usefulness of personality traits as effective predictors of people's safety behaviour at work. In addition, this study could have practical implications. The machine learning model developed can help identify vulnerable workers who are more prone to undertake unsafe behaviours, which is proven to have good prediction accuracy and is thereby potentially useful for decision making and safety management on construction sites.
READ FULL TEXT