Tight Bounds for Inverting Permutations via Compressed Oracle Arguments
In his seminal work on recording quantum queries [Crypto 2019], Zhandry studied interactions between quantum query algorithms and the quantum oracle corresponding to random functions. Zhandry presented a framework for interpreting various states in the quantum space of the oracle that can be used to provide security proofs in quantum cryptography. In this paper, we introduce a similar interpretation for the case when the oracle corresponds to random permutations instead of random functions. Because both random functions and random permutations are highly significant in security proofs, we hope that the present framework will find applications in quantum cryptography. Additionally, we show how this framework can be used to prove that the success probability for a k-query quantum algorithm that attempts to invert a random N-element permutation is at most O(k^2/N).
READ FULL TEXT