Time Series Analysis of COVID-19 Infection Curve: A Change-Point Perspective

07/09/2020
by   Feiyu Jiang, et al.
0

In this paper, we model the trajectory of the cumulative confirmed cases and deaths of COVID-19 (in log scale) via a piecewise linear trend model. The model naturally captures the phase transitions of the epidemic growth rate via change-points and further enjoys great interpretability due to its semiparametric nature. On the methodological front, we advance the nascent self-normalization (SN) technique (Shao, 2010) to testing and estimation of a single change-point in the linear trend of a nonstationary time series. We further combine the SN-based change-point test with the NOT algorithm (Baranowski et al., 2019) to achieve multiple change-point estimation. Using the proposed method, we analyze the trajectory of the cumulative COVID-19 cases and deaths for 30 major countries and discover interesting patterns with potentially relevant implications for effectiveness of the pandemic responses by different countries. Furthermore, based on the change-point detection algorithm and a flexible extrapolation function, we design a simple two-stage forecasting scheme for COVID-19 and demonstrate its promising performance in predicting cumulative deaths in the U.S.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro