Tiny Object Tracking: A Large-scale Dataset and A Baseline
Tiny objects, frequently appearing in practical applications, have weak appearance and features, and receive increasing interests in meany vision tasks, such as object detection and segmentation. To promote the research and development of tiny object tracking, we create a large-scale video dataset, which contains 434 sequences with a total of more than 217K frames. Each frame is carefully annotated with a high-quality bounding box. In data creation, we take 12 challenge attributes into account to cover a broad range of viewpoints and scene complexities, and annotate these attributes for facilitating the attribute-based performance analysis. To provide a strong baseline in tiny object tracking, we propose a novel Multilevel Knowledge Distillation Network (MKDNet), which pursues three-level knowledge distillations in a unified framework to effectively enhance the feature representation, discrimination and localization abilities in tracking tiny objects. Extensive experiments are performed on the proposed dataset, and the results prove the superiority and effectiveness of MKDNet compared with state-of-the-art methods. The dataset, the algorithm code, and the evaluation code are available at https://github.com/mmic-lcl/Datasets-and-benchmark-code.
READ FULL TEXT