Topic-time Heatmaps for Human-in-the-loop Topic Detection and Tracking

10/12/2021
by   Doug Beeferman, et al.
11

The essential task of Topic Detection and Tracking (TDT) is to organize a collection of news media into clusters of stories that pertain to the same real-world event. To apply TDT models to practical applications such as search engines and discovery tools, human guidance is needed to pin down the scope of an "event" for the corpus of interest. In this work in progress, we explore a human-in-the-loop method that helps users iteratively fine-tune TDT algorithms so that both the algorithms and the users themselves better understand the nature of the events. We generate a visual overview of the entire corpus, allowing the user to select regions of interest from the overview, and then ask a series of questions to affirm (or reject) that the selected documents belong to the same event. The answers to these questions supplement the training data for the event similarity model that underlies the system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset