Towards Inference-Oriented Reading Comprehension: ParallelQA
In this paper, we investigate the tendency of end-to-end neural Machine Reading Comprehension (MRC) models to match shallow patterns rather than perform inference-oriented reasoning on RC benchmarks. We aim to test the ability of these systems to answer questions which focus on referential inference. We propose ParallelQA, a strategy to formulate such questions using parallel passages. We also demonstrate that existing neural models fail to generalize well to this setting.
READ FULL TEXT