Towards Large-Scale Simulations of Open-Ended Evolution in Continuous Cellular Automata
Inspired by biological and cultural evolution, there have been many attempts to explore and elucidate the necessary conditions for open-endedness in artificial intelligence and artificial life. Using a continuous cellular automata called Lenia as the base system, we built large-scale evolutionary simulations using parallel computing framework JAX, in order to achieve the goal of never-ending evolution of self-organizing patterns. We report a number of system design choices, including (1) implicit implementation of genetic operators, such as reproduction by pattern self-replication, and selection by differential existential success; (2) localization of genetic information; and (3) algorithms for dynamically maintenance of the localized genotypes and translation to phenotypes. Simulation results tend to go through a phase of diversity and creativity, gradually converge to domination by fast expanding patterns, presumably a optimal solution under the current design. Based on our experimentation, we propose several factors that may further facilitate open-ended evolution, such as virtual environment design, mass conservation, and energy constraints.
READ FULL TEXT