Towards Large Scale Training Of Autoencoders For Collaborative Filtering

08/30/2018
by   Abdallah Moussawi, et al.
0

In this paper, we apply a mini-batch based negative sampling method to efficiently train a latent factor autoencoder model on large scale and sparse data for implicit feedback collaborative filtering. We compare our work against a state-of-the-art baseline model on different experimental datasets and show that this method can lead to a good and fast approximation of the baseline model performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro