Towards Prior-Free Approximately Truthful One-Shot Auction Learning via Differential Privacy

03/31/2021
by   Daniel Reusche, et al.
0

Designing truthful, revenue maximizing auctions is a core problem of auction design. Multi-item settings have long been elusive. Recent work (arXiv:1706.03459) introduces effective deep learning techniques to find such auctions for the prior-dependent setting, in which distributions about bidder preferences are known. One remaining problem is to obtain priors in a way that excludes the possibility of manipulating the resulting auctions. Using techniques from differential privacy for the construction of approximately truthful mechanisms, we modify the RegretNet approach to be applicable to the prior-free setting. In this more general setting, no distributional information is assumed, but we trade this property for worse performance. We present preliminary empirical results and qualitative analysis for this work in progress.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset