Towards Understanding and Harnessing the Effect of Image Transformation in Adversarial Detection
Deep neural networks (DNNs) are threatened by adversarial examples. Adversarial detection, which distinguishes adversarial images from benign images, is fundamental for robust DNN-based services. Image transformation is one of the most effective approaches to detect adversarial examples. During the last few years, a variety of image transformations have been studied and discussed to design reliable adversarial detectors. In this paper, we systematically synthesize the recent progress on adversarial detection via image transformations with a novel classification method. Then, we conduct extensive experiments to test the detection performance of image transformations against state-of-the-art adversarial attacks. Furthermore, we reveal that each individual transformation is not capable of detecting adversarial examples in a robust way, and propose a DNN-based approach referred to as AdvJudge, which combines scores of 9 image transformations. Without knowing which individual scores are misleading or not misleading, AdvJudge can make the right judgment, and achieve a significant improvement in detection accuracy. We claim that AdvJudge is a more effective adversarial detector than those based on an individual image transformation.
READ FULL TEXT