Trade Reliability for Security: Leakage-Failure Probability Minimization for Machine-Type Communications in URLLC

03/07/2023
by   Yao Zhu, et al.
0

How to provide information security while fulfilling ultra reliability and low-latency requirements is one of the major concerns for enabling the next generation of ultra-reliable and low-latency communications service (xURLLC), specially in machine-type communications. In this work, we investigate the reliability-security tradeoff via defining the leakage-failure probability, which is a metric that jointly characterizes both reliability and security performances for short-packet transmissions. We discover that the system performance can be enhanced by counter-intuitively allocating fewer resources for the transmission with finite blocklength (FBL) codes. In order to solve the corresponding optimization problem for the joint resource allocation, we propose an optimization framework, that leverages lower-bounded approximations for the decoding error probability in the FBL regime. We characterize the convexity of the reformulated problem and establish an efficient iterative searching method, the convergence of which is guaranteed. To show the extendability of the framework, we further discuss the blocklength allocation schemes with practical requirements of reliable-secure performance, as well as the transmissions with the statistical channel state information (CSI). Numerical results verify the accuracy of the proposed approach and demonstrate the reliability-security tradeoff under various setups.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset