Training data-efficient image transformers distillation through attention

12/23/2020
by   Hugo Touvron, et al.
15

Recently, neural networks purely based on attention were shown to address image understanding tasks such as image classification. However, these visual transformers are pre-trained with hundreds of millions of images using an expensive infrastructure, thereby limiting their adoption by the larger community. In this work, with an adequate training scheme, we produce a competitive convolution-free transformer by training on Imagenet only. We train it on a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1 ImageNet with no external data. We share our code and models to accelerate community advances on this line of research. Additionally, we introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention. We show the interest of this token-based distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets for both Imagenet (where we obtain up to 84.4

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset