Transductive Data-Selection Algorithms for Fine-Tuning Neural Machine Translation

08/26/2019
by   Alberto Poncelas, et al.
0

Machine Translation models are trained to translate a variety of documents from one language into another. However, models specifically trained for a particular characteristics of the documents tend to perform better. Fine-tuning is a technique for adapting an NMT model to some domain. In this work, we want to use this technique to adapt the model to a given test set. In particular, we are using transductive data selection algorithms which take advantage the information of the test set to retrieve sentences from a larger parallel set. In cases where the model is available at translation time (when the test set is provided), it can be adapted with a small subset of data, thereby achieving better performance than a generic model or a domain-adapted model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset