TransRUPNet for Improved Out-of-Distribution Generalization in Polyp Segmentation

06/03/2023
by   Debesh Jha, et al.
16

Out-of-distribution (OOD) generalization is a critical challenge in deep learning. It is specifically important when the test samples are drawn from a different distribution than the training data. We develop a novel real-time deep learning based architecture, TransRUPNet that is based on a Transformer and residual upsampling network for colorectal polyp segmentation to improve OOD generalization. The proposed architecture, TransRUPNet, is an encoder-decoder network that consists of three encoder blocks, three decoder blocks, and some additional upsampling blocks at the end of the network. With the image size of 256×256, the proposed method achieves an excellent real-time operation speed of 47.07 frames per second with an average mean dice coefficient score of 0.7786 and mean Intersection over Union of 0.7210 on the out-of-distribution polyp datasets. The results on the publicly available PolypGen dataset (OOD dataset in our case) suggest that TransRUPNet can give real-time feedback while retaining high accuracy for in-distribution dataset. Furthermore, we demonstrate the generalizability of the proposed method by showing that it significantly improves performance on OOD datasets compared to the existing methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset