Trap of Feature Diversity in the Learning of MLPs
In this paper, we discover a two-phase phenomenon in the learning of multi-layer perceptrons (MLPs). I.e., in the first phase, the training loss does not decrease significantly, but the similarity of features between different samples keeps increasing, which hurts the feature diversity. We explain such a two-phase phenomenon in terms of the learning dynamics of the MLP. Furthermore, we propose two normalization operations to eliminate the two-phase phenomenon, which avoids the decrease of the feature diversity and speeds up the training process.
READ FULL TEXT