Treatment Choice with Nonlinear Regret
The literature on treatment choice focuses on the mean of welfare regret. Ignoring other features of the regret distribution, however, can lead to an undesirable rule that suffers from a high chance of welfare loss due to sampling uncertainty. We propose to minimize the mean of a nonlinear transformation of welfare regret. This paradigm shift alters optimal rules drastically. We show that for a wide class of nonlinear criteria, admissible rules are fractional. Focusing on mean square regret, we derive the closed-form probabilities of randomization for finite-sample Bayes and minimax optimal rules when data are normal with known variance. The minimax optimal rule is a simple logit based on the sample mean and agrees with the posterior probability for positive treatment effect under the least favorable prior. The Bayes optimal rule with an uninformative prior is different but produces quantitatively comparable mean square regret. We extend these results to limit experiments and discuss our findings through sample size calculations.
READ FULL TEXT