Trojan Horse Training for Breaking Defenses against Backdoor Attacks in Deep Learning

03/25/2022
by   Arezoo Rajabi, et al.
0

Machine learning (ML) models that use deep neural networks are vulnerable to backdoor attacks. Such attacks involve the insertion of a (hidden) trigger by an adversary. As a consequence, any input that contains the trigger will cause the neural network to misclassify the input to a (single) target class, while classifying other inputs without a trigger correctly. ML models that contain a backdoor are called Trojan models. Backdoors can have severe consequences in safety-critical cyber and cyber physical systems when only the outputs of the model are available. Defense mechanisms have been developed and illustrated to be able to distinguish between outputs from a Trojan model and a non-Trojan model in the case of a single-target backdoor attack with accuracy > 96 percent. Understanding the limitations of a defense mechanism requires the construction of examples where the mechanism fails. Current single-target backdoor attacks require one trigger per target class. We introduce a new, more general attack that will enable a single trigger to result in misclassification to more than one target class. Such a misclassification will depend on the true (actual) class that the input belongs to. We term this category of attacks multi-target backdoor attacks. We demonstrate that a Trojan model with either a single-target or multi-target trigger can be trained so that the accuracy of a defense mechanism that seeks to distinguish between outputs coming from a Trojan and a non-Trojan model will be reduced. Our approach uses the non-Trojan model as a teacher for the Trojan model and solves a min-max optimization problem between the Trojan model and defense mechanism. Empirical evaluations demonstrate that our training procedure reduces the accuracy of a state-of-the-art defense mechanism from >96 to 0 percent.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset