TSAM: A Two-Stream Attention Model for Causal Emotion Entailment

03/02/2022
by   Duzhen Zhang, et al.
0

Causal Emotion Entailment (CEE) aims to discover the potential causes behind an emotion in a conversational utterance. Previous works formalize CEE as independent utterance pair classification problems, with emotion and speaker information neglected. From a new perspective, this paper considers CEE in a joint framework. We classify multiple utterances synchronously to capture the correlations between utterances in a global view and propose a Two-Stream Attention Model (TSAM) to effectively model the speaker's emotional influences in the conversational history. Specifically, the TSAM comprises three modules: Emotion Attention Network (EAN), Speaker Attention Network (SAN), and interaction module. The EAN and SAN incorporate emotion and speaker information in parallel, and the subsequent interaction module effectively interchanges relevant information between the EAN and SAN via a mutual BiAffine transformation. Experimental results on a benchmark dataset demonstrate that our model achieves new State-Of-The-Art (SOTA) performance and outperforms baselines remarkably.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset