Tucker Decomposition Network: Expressive Power and Comparison

05/23/2019
by   Ye Liu, et al.
0

Deep neural networks have achieved a great success in solving many machine learning and computer vision problems. The main contribution of this paper is to develop a deep network based on Tucker tensor decomposition, and analyze its expressive power. It is shown that the expressiveness of Tucker network is more powerful than that of shallow network. In general, it is required to use an exponential number of nodes in a shallow network in order to represent a Tucker network. Experimental results are also given to compare the performance of the proposed Tucker network with hierarchical tensor network and shallow network, and demonstrate the usefulness of Tucker network in image classification problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset