Two improved Gauss-Seidel projection methods for Landau-Lifshitz-Gilbert equation
In this paper, we present two improved Gauss-Seidel projection methods with unconditional stability. The first method updates the gyromagnetic term and the damping term simultaneously and follows by a projection step. The second method introduces two sets of approximate solutions, where we update the gyromagnetic term and the damping term simultaneously for one set of approximate solutions and apply the projection step to the other set of approximate solutions in an alternating manner. Compared to the original Gauss-Seidel projection method which has to solve heat equations 7 times at each time step, the improved methods solve heat equations 5 times and 3 times, respectively. First-order accuracy in time and second-order accuracy in space are verified by examples in both 1D and 3D. In addition, unconditional stability with respect to both the grid size and the damping parameter is confirmed numerically. Application of both methods to a realistic material is also presented with hysteresis loops and magnetization profiles. Compared with the original method, the recorded running times suggest that savings of both methods are about 2/7 and 4/7 for the same accuracy requirement, respectively.
READ FULL TEXT