UM-IU@LING at SemEval-2019 Task 6: Identifying Offensive Tweets Using BERT and SVMs

04/06/2019
by   Jian Zhu, et al.
0

This paper describes the UM-IU@LING's system for the SemEval 2019 Task 6: OffensEval. We take a mixed approach to identify and categorize hate speech in social media. In subtask A, we fine-tuned a BERT based classifier to detect abusive content in tweets, achieving a macro F1 score of 0.8136 on the test data, thus reaching the 3rd rank out of 103 submissions. In subtasks B and C, we used a linear SVM with selected character n-gram features. For subtask C, our system could identify the target of abuse with a macro F1 score of 0.5243, ranking it 27th out of 65 submissions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro