Uncertainty aware Search Framework for Multi-Objective Bayesian Optimization with Constraints

08/16/2020
by   Syrine Belakaria, et al.
0

We consider the problem of constrained multi-objective (MO) blackbox optimization using expensive function evaluations, where the goal is to approximate the true Pareto set of solutions satisfying a set of constraints while minimizing the number of function evaluations. We propose a novel framework named Uncertainty-aware Search framework for Multi-Objective Optimization with Constraints (USeMOC) to efficiently select the sequence of inputs for evaluation to solve this problem. The selection method of USeMOC consists of solving a cheap constrained MO optimization problem via surrogate models of the true functions to identify the most promising candidates and picking the best candidate based on a measure of uncertainty. We applied this framework to optimize the design of a multi-output switched-capacitor voltage regulator via expensive simulations. Our experimental results show that USeMOC is able to achieve more than 90 to uncover optimized circuits.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset