Unconstrained Submodular Maximization with Constant Adaptive Complexity

11/15/2018
by   Lin Chen, et al.
0

In this paper, we consider the unconstrained submodular maximization problem. We propose the first algorithm for this problem that achieves a tight (1/2-ε)-approximation guarantee using Õ(ε^-1) adaptive rounds and a linear number of function evaluations. No previously known algorithm for this problem achieves an approximation ratio better than 1/3 using less than Ω(n) rounds of adaptivity, where n is the size of the ground set. Moreover, our algorithm easily extends to the maximization of a non-negative continuous DR-submodular function subject to a box constraint and achieves a tight (1/2-ε)-approximation guarantee for this problem while keeping the same adaptive and query complexities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro